博客
关于我
Pytorch实践--eval 模式,每次预测相同的数据得到的概率不同
阅读量:789 次
发布时间:2019-03-25

本文共 831 字,大约阅读时间需要 2 分钟。

在使用PyTorch训练好的模型进行预测时,可能会遇到一个问题,此问题出现在模型被设置为评估模式(eval())后。具体来说,同一数据在每次预测时,概率值会出现变化。这种情况下,许多技术人员可能会感到困惑,不知道为什么相同数据的预测结果会截然不同。

分析与原因

使用eval()模式会将模型切换为评估模式,此时模型的Dropout和BatchNorm层(如果有的话)会生效。但需要注意的是,这些层必须包含在模块(_modules)中。只有当类成员的type派生于Module时,该成员才会被自动划归到_modules中。如果在设计网络时,某些包含Dropout或BatchNorm的层不被包含在模块中,那么在评估模式下,这些层将无法正常工作。

查看源码发现

通过检查模型的源码,可以发现以下情况:某些成员函数使用了nn.Dropout,尽管它应该属于模块。但是,由于某些原因,这个Dropout层不属于_modules,这就导致在评估模式下,Dropout层无法正常工作。这个问题导致每次对同一数据进行预测时,Dropout层的随机采样结果不同,从而造成概率值的变化。

解决方案

要解决此类问题,模型开发者需要确保在网络设计阶段,所有使用Dropout或BatchNorm的层都包含在模块(_modules)中。这样,在评估模式下,这些层才能正常工作。这是确保模型在评估模式下表现稳定和可靠的关键步骤。

建议开发人员在构建网络时,仔细检查每个使用Dropout或BatchNorm的层是否被正确地包含在模块中。如果某个特定的层不在模块中,应将该层所属的父容器或者整体网络结构进行检查,并确保它们被正确划归到模块中。如果在代码中没有明确地将这些层包含在模块中,可能需要手动调整模型的结构,使其符合PyTorch的模块化管理方式。

通过以上措施,可以确保模型在评估模式下,其Dropout和BatchNorm层能够正常工作,从而使得模型预测结果具有稳定性和可测量性。

转载地址:http://jjxuk.baihongyu.com/

你可能感兴趣的文章
MySQL笔记:InnoDB的锁机制
查看>>
mysql第一天~mysql基础【主要是DDL、DML、DQL语句,以及重点掌握存存引擎、查询(模糊查询)】
查看>>
mysql第二天~mysql基础【查询排序、分页查询、多表查询、数据备份与恢复等】
查看>>
MySQL简介和安装
查看>>
MySQL简单查询
查看>>
MySQL管理利器 MySQL Utilities 安装
查看>>
MySQL篇(管理工具)
查看>>
mysql类型转换函数convert与cast的用法
查看>>
mysql系列一
查看>>
MySQL系列之数据类型(Date&Time)
查看>>
MySQL系列之数据类型(Date&Time)
查看>>
Mysql系列之锁机制
查看>>
Mysql系列九:使用zookeeper管理远程Mycat配置文件、Mycat监控、Mycat数据迁移(扩容)...
查看>>
MySql系列:[4200][1140]In aggregated query without GROUP BY, expression #2 of SELECT list contains nona
查看>>
MySQL索引
查看>>
Mysql索引
查看>>
mysql索引
查看>>
mysql索引
查看>>
Mysql索引,索引的优化,如何避免索引失效案例
查看>>
Mysql索引、命令重点介绍
查看>>